全国免费咨询热线4000-188-588

TEL:029-88643194 FAX:029-88611928

二氧化碳气体保护焊流量计

本文章主要介绍了:二氧化碳气体保护焊流量计,特殊气体流量计企业,拆解湿式气体流量计,二氧化碳气体保护焊流量计等信息

H+WRSL系列智能热式气体质量流量计是依据流体吸收热的速度直接与质量流量相关的原量研制而成,应用范围广。应用场合包括:
公用工程--电、气、水处理的监控
管道的气体:通用系统;沼气;煤气;天然气;液化气;锅炉预热空气。
石油与天然气工业
能量交换;填井气回收;燃气计量;气体质量分析;泄漏气测试;天然气测量;火炬气的监控。
燃料系统中气体分配过程中的气体测量;锅炉及辅助系统中各种气体的测量;燃气炉上气体测量;氢气测量;电厂高炉的一次风二次风的测量。
烟气循环监测;采样系统中气体流量计量;引风机的气体流量计量;化肥厂氨气测量;电池工厂各种气体流量测量。
(二氧化碳气体保护焊流量计)

热式气体质量流量计是基于热扩散原理而设计的,从外观上看热式气体质量流量计有两个直径φ3左右的不锈钢棒,这两个钢棒就是流量计的传感器。气体流速和增加的热量存在固定的函数关系,这就是恒温差原理。恒温差热式气体质量流量计不但不受温度影响,而且不受压力的影响,热式气体质量流量计是真正的直接式质量流量计,用户不必对压力和温度进行修正。工作时,一个传感器不间断地测量介质的温度T1,并作为惠斯登电桥的一侧,我们称为测温传感器;另一个传感器作为惠斯登电桥的另一侧,自加热到高于介质温度到T2,它用于感测流体速度,称为速度传感器。该温度δT=T2-T1,T2>T1,当有流体流过时,由于气体分子碰撞传感器并将T2的热量带走,使T2温度下降,若要使δT保持不变,就应该提高T2的供电电流,气体流动速度越快,带走的热量也就越多。
(二氧化碳气体保护焊流量计)

【摘要】本文在分析转子流量计结构和原理的基础上,结合其技术特点和应用需求,从流量计算、量值修正以及流量计技术选型和安装要求等方面进行了较为系统的论述和研究。希望能为广大计量工作者更好的掌握转子流量计应用技术,实现对流量的准确测量提供帮助。
0引言 转子流量计是非常常用的节流式流量计之一,具有结构简单、制造容易、测量范围宽(量程比可达10:1)、测量精确度较高(误差±5%左右)、示值直观、维护方便、压损小等优点,是现代生活和工业生产中应用非常广泛的计量器具。 在计量技术水平日益发展、测量精度需求不断提高的今天,计量工作者只有全面了解转子流量计的结构原理、流量计算、量值影响因素与修正方法、以及流量计的选型、安装要求,才能选出非常符合需求的计量仪表,实现非常佳测量效果。作者希望本文给计量工作者带来些许帮助。 1转子流量计结构原理简析 1.1结构分析 转子流量计由两部件组成,一是从下向上逐渐扩张的锥形管,二是置于锥形管中,可沿管中心线上下移动、密度比流体稍大的转子(图1转子流量计原理图)。锥形管由玻璃、塑料或金属材质制成。玻璃或塑料材质的锥形管上刻有流量刻度,透过锥管可看到透明流体中转子的位置及所对应的刻度值;金属材质锥形管中转子位置通过磁性耦合等方式传递管外,在面板上显示量值。 1.2工作原理 当测量流体的流量时,流体从锥形管下端流入冲击转子,对它产生一个作用力,力的大小随流量大小而变化;当流量足够大时,所产生作用力将转子托起,使之升高;流体经转子与锥形管壁间的环形断面从上端流出。当流体对转子的作用力等于转子重量时,转子因受力平衡而停留在某一位置;这个位置与流量有相互对应的关系,据此位置,即可求得流量值。 1.3流量计算 流量计转子在锥形管中受三个力:重力、动压力和浮力,三力平衡时,转子重力=动压力+浮力。当流速变大或变小时,转子将向上或向下移动,流体流动的截面积也发生变化,直至达到平衡时对应的流速,转子在新的位置上稳定。因此,转子稳定时受力关系公式如下: V(ρt-ρf)g=△p·A(1) 其中:ρt-转子密度;ρf-流体密度;g-重力加速度;V-转子体积;△p-转子前后压差;A-转子非常大截面积。 结合公式(1),并参照孔板流量计流量与节流压差间的关系方程式: 【公式1】 得转子流量计流量公式: 【公式2】 其中:Qv-流量值;a0-流量系数(与转子形状、流体状态、流量计结 构和流体物理性质等因素有关,只能由实验来确定);A0-环隙面积,对应于转子高度h;近似有:A0=ch;系数c与转子和锥形管的几何形状及尺寸有关;ρt-转子密度;ρf—流体密度;At-转子非常大截面积。 流量方程式可写成:【公式3】 由公式(4)可知,转子的停浮高度h与流量qv成对应关系;根据高度的不同来标刻流量值,即可在实际应用中即时读取流量值。 2测量值的流体相关性修正 2.1测量值修正分析 从式(4)可知,被测流体的密度不同,流量大小与转子高度之间的对用关系也不同。因受标定设备的限制,生产厂商不可能对所有流量计都做实液标定,故测量非标定介质时,应对读出的测量值进行修正,以保证精确度。 对于液体,其密度为常数,只需修正被测液体和标定液体不同造成的影响即可;而气体因具有可压缩性,还应考虑标定状态和实际状态不同时温度和压力的影响。 通常,标定状态默认为:温度T=293.16K,绝对压力p=101325Pa。根据流量计算公式,进行如下分析: 一方面,设定在标定状态下,测量标定流体的流量公式为: 式中:Qv0-标定状态下标定流体的流量示值;a0-标定状态标定流体的流量系数;ρ0-流体在标定状态下的密度。 另一方面,设定流量计在工作状态下,测量被测流体的流量公式为: 式中:Qv-工作状态下被测流体的流量示值;a-工作状态被测流体的流量系数;ρ-流体在工作状态下的密度。 由式(5)和式(6)可以看出,在实际工作状态下,被测流体的实际流量为qv,但转子在高度h处,转子流量计的显示仍然是qv0。比较式(5)和式(6),可以得出Qv和Qv0之间的关系,即流量修正公式为: 实验表明,流量系数a与雷诺数Re和流量计结构有关,当被测流体的黏度与标定流体的黏度相差不大时,或在流量系数a为常数的流量范围内,可不考虑a的影响,即可以认为a=a0,所以(7)式可以简化为: 若被测流体的黏度相对标定流体的黏度相差较大,则应考虑黏度 差异对实际流量系数a与标定流量系数a0间的差异,参照式(8)进行 修正或进行实际标定,不能简单地认为a=a0。 2.2流体密度修正 2.2.1液体流量的测量值修正 流量计对液态类流体的测量示数通常采用水为参照流体,在标定状态下进行标定。实际测量非水液体流量时,只需修正被测液体和标定液体(水)之间密度差异而造成的影响,即可按(8)式进行修正换算。此时,ρ0为标定流体的密度,ρ为被测流体的密度。 2.2.2气体流量的测量值修正 流量计对气态类流体的测量示数采用空气为参照物,在标定状态下进行标定。由于气体的密度受温度、压力变化的影响较大,故不仅应随着被测气体与标定气体之间的密度不同进行换算,而且要随工作状态时温度和压力与标定状态的不同进行修正换算。为简化气体流量值的修正,一般可以忽略黏度对流量系数的影响,而且,对于气体来说,由于ρt>>ρ0,ρt>>ρ,则由(8)式可得: 测量非标定状态下的空气流量时,可直接使用式(9)计算。但ρ为被测气体在工作状态下的密度,实际使用起来较为不便。为此,可以将流体密度和所处状态分开修正,即先在标定状态下对被测流体的密度进行修正,然后再进行状态修正。非常后的修正公式为: 其中:p0-标定状态下的绝对压力;p-工作状态下的绝对压力;T0-标定状态下的绝对温度;T-工作状态下的绝对温度;ρ′-被测气体在标定状态下的密度。 2.3流量系数修正 2.3.1流量系数与转子形状的相关性 由式(4)可以看出,流量系数也是影响测定结果的一个重要参数。它因转子的形状不同而有所不同。虽然转子形状是制造厂按仪表结构和流量测量范围选择合适形状而设计的,不属于使用者考虑的范畴,但使用者应了解转子形状与测量值准确程度的关系。一般情况而言,测量同种流体时,哪种形状的转子在锥形管中的高度越高,则使用这种转子的流量计的流量系数就越小,其测量精度就越高。可根据这一特点,选择更为适合自身需求的转子流量计。 2.3.2流量系数与雷诺数的相关性 当流量计的转子和结构一定时,流量系数主要受雷诺数Re影响。当雷诺数Re较小时,流量系数随雷诺数Re变化而变化,此时需要对进行关于流量系数的修正(见式7);当雷诺数达到一定值Remin(临界雷诺数)后,流量系数基本保持平稳,可视为常数,不需做关于流量系数的修正计算。不同的流量计很难找到一个通用的理论公式来描述流量系数和雷诺数的关系。 由于流体的多样性和环境的复杂性,流量系数修正存在诸多困难。如果需要进行非常精确的计量,使用者可让制造商用实际流体对流量计刻度进行校准,如此可直接得到工作环境下的真实量值,不必再进行各种修正。 3选型与安装技术分析 3.1转子流量计的种类 按锥形管材质的不同,大体可分三类。其中:玻璃管转子流量计结构简单,成本低,易制成防腐蚀性仪表,还具有透明度高、读数直观、不易破裂、重量轻、寿命长、安装连接方便等优点。塑料管转子流量计则具有体积小、重量轻、锥管不易破碎、耐腐蚀等特点。 金属管浮子流量计可测量液体、气体流量,特别适宜低流速小流量的介质测量,可提供瞬时流量、累积流量显示,或通过输出标准信号,实现流量指示、积算、记录、控制和报警等功能。 3.2选型分析 为保证测量数据的精度,使用者应根据安装环境、流体物理和化学特性等因素,选择流量仪表。 (1)若流体为中小流量,压力小于1MPa,温度低于100℃,透明无毒,无燃烧爆炸危险,对玻璃无腐蚀无粘附,一般可采用玻璃管转子流量计。 (2)在空间相对较小,撑重力弱的管路环境,流体为中小流量、压力较小、温度较低,可选用塑料管转子流量计。 (3)若流体为中小流量、易汽化(或易凝结)、有毒易燃易爆,不含磁性物质、纤维和磨损物质,对不锈钢无腐蚀性,可选普通型金属管转子流量计;若流体有腐蚀性,应采用防腐型金属管转子流量计;若流体易结晶或汽化或高粘度,应选用带夹套并带伴热或冷却接口的金属管转子流量计。 在高温或高寒、高压、有毒环境,应选用具远传信息功能的金属管 转子流量计。 (4)若流体压力不稳定,尤其用于气体测量时,应选具阻尼结构的转子流量计。 3.3安装技术要求 正确安装是流量计正常工作、准确测量的必要条件。一般应遵循如下要求: (1)转子流量计须垂直安装,流体自下而上流过流量计,垂直度优于2°。 (2)进口应有5倍管道直径以上的直管段,出口应有250mm直段。 (3)安装位置适当加装管道支撑。 (4)流量计旁应加装旁路管道和旁路阀,在下游安装单向阀。 (5)测量流体若为脏污介质或含有固体杂质,须在进口处加装过滤器和定期清洗装置。 (6)测量流体中若含有铁磁性物质,应安装磁过滤器。 (7)带液晶或锂电池供电的流量计尽量避免阳光直射和高温环境(≥65℃)。 (8)测量气体的工作压力应不小于流量计压损的5倍。 4总结 转子流量计结构简单,原理亦不复杂,但是,由于流量计量特性与流体属性的相关性、以及流体物理性质的千差万别,使得流量计量技术应用变得非常复杂。不仅流体存在黏度的差异,而且气体类流体的可压缩性及热膨胀性,更加大了流体测量的难度。因此,本文只是作者一些经验认识和技术分析的归纳整理,有关更加深入的研究,期待众多的流体计量科研人员提供更有价值的真知灼见。
(二氧化碳气体保护焊流量计)

(二氧化碳气体保护焊流量计)

在曲线表中St=0.17的平直部分,漩涡的释放频率与流速成正比,即为涡街流量传感器测量范围度。只要检测出频率f就可以求得管内流体的流速,由流速V求出体积流量。所测得的脉冲数与体积量之比,称为仪表常数(K),见式(2)
K=3600f/Q(1/m3)公式(2)
式中:K=仪表常数(m-3)。
f=脉冲个数
Q=体积流量(m3)
公称通径(mm)
15、20、25,40,50,65,80,100,125,150,200,250,300,(300~1000插入式)
公称压力(MPa)
DN15-DN2004.0(>4.0协议供货),DN250-DN3001.6(>1.6协议供货)
介质温度(℃)
压电式:-40~150,-40~260,-40~330;电容式:-40~400,-40~500(协议订货)
(二氧化碳气体保护焊流量计)

引言标准表法流量标准装置的方法很多,下面介绍一种用音速文丘利喷嘴作标准表的气体流量标准装置。与用其它流量计作为标准表相比,用音速喷嘴作为标准表具有很多优点,如结构简单、性能稳定、准确度高、无可动部件、维护方便、检定周期长(五年)等等。音速喷嘴法气体流量标准装置适用于对各种气体流量计的检测和校准,可以检测质量流量计、速度式流量计、容积式流量计、转子流量计、差压式流量计或其它种类的流量计。装置结构音速喷嘴法气体流量标准装置的结构如图1所示。对于流量比较大的标准装置,需选用水环式真空泵,因此还需冷却塔、离心泵、地下水池、消音器。为了调整入口气体流场和降低噪音,还应在入口处安装喇叭形入口。被检表的前后直管段应足够长。此外,还应配备配电柜、计算机、夹表器、控制系统和数据采集系统。1.真空泵2.储气罐3.汇流管(容器)4.开关阀5.音速文丘利喷嘴6.滞止容器温度计7.滞止容器压力计8.滞止容器9.流量调节阀10.被检表后温度计11.被检流量计12.被检表前压力计图1音速喷嘴法气体流量标准装置检定原理如图1所示,用真空泵1将空气由被检表的上游直管段入口吸入,经过被检表前直管段、被检表11和被检表下游直管段进入滞止容器8,在滞止容器的下游,有一组音速喷嘴5,控制音速喷嘴下游的开关阀门4,可以任意选择所要开关的音速喷嘴,以达到改变被检表流量的目的,滞止容器需要测温6测压7,代入公式计算可以得到通过音速喷嘴的质量流量,亦即通过被检表处的质量流量。通过测量被检表处的温度10和压力12,可以计算出空气密度,进而得到标准体积流量。流量调节阀9一般只用于开关,也可作为调节流量的辅助手段。在进行小流量检定时,可以不用开启真空泵,只要储气罐2的真空度能够满足要求即可。真空泵的能力应满足下列两个条件:第一,真空泵所提供的流量应大于被检流量计的最大流量;第二,在测量过程中,真空泵所提供的真空度应满足音速喷嘴的临界压力比。流量计算公式1.临界压力比及其计算公式当气流处于亚音速时,喉部的气体流速将随节流压力比(即出口压力P1与上游滞止压力P0之比)的减小而增大。当节流压力比减小到一定值时,喉部流速达到最大流速----音速,即达到所谓的临界流,此时,如果P0不变,再减小P1(即再减小节流压力比)流速将保持不变,也就是说,流速不再受下游压力的影响。此时的文丘利喷嘴称为音速文丘利喷嘴,又称临界流文丘利喷嘴,此时的节流压力比称为临界压力比。在理想条件下,即气流是一维流动、等熵、完全气体,则从理论上可导出临界压力比的计算公式:式中,k----气体等熵指数,对于完全气体,k等于比热比。对于空气,k=1.4,则(P1/P0)=0.5282.理想条件下的质量流量在理想条件下,音速文丘利喷嘴的质量流量公式:式中,qmi----音速文丘利喷嘴在理想条件下的质量流量(kg/s)A*----音速文丘利喷嘴的喉部面积(m2)C*i----气体在理想条件下的临界流函数P0----音速文丘利喷嘴前的气体滞止绝对压力(Pa)T0----音速文丘利喷嘴前的气体滞止绝对温度(K)RM----气体常数(J/(kg×K)),对于空气,R=287.13.实际条件下的质量流量在实际条件下,音速文丘利喷嘴的质量流量公式:式中,qm----音速文丘利喷嘴在实际条件下的质量流量(kg/s)C*----气体在实际条件下的临界流函数,假定气体为一维、等熵流动,利用实际气体的热力学性质表,可用计算机计算出来。C----流出系数,C是对“一维、等熵流动”等假设条件的修正。C只是雷诺数Red的函数。式中,Red----音速文丘利喷嘴的喉部雷诺数(无量纲)d----音速文丘利喷嘴的喉部直径(m)m0----气体在滞止条件下的动力粘度(kg/(m×s)从式(4)中可以看出,只要用试验的方法求得流出系数C,就可按测得的滞止压力P0和滞止温度T0(由查表可得C*)计算出质量流量qm。装置流量范围的选择方法和确定根据音速喷嘴的流量计算公式(式(4))可知,在临界条件下,改变音速喷嘴的滞止压力值,则可改变通过音速喷嘴的质量流量值。实际上,是通过调节压力调节阀来调节流量。同样,也可通过改变流通面积来改变流量,即通过若干个音速文丘利喷嘴的组合,或设计时将某一个音速喷嘴的面积增大来达到所需要的流量。在设计高压或常压式音速喷嘴法气体流量标准装置时,都可以采用这种方法。装置流量范围和流量点的选择原则:第一,选择该装置主要检定的流量计(如涡街流量传感器或涡轮流量计)的流量范围。第二,根据JJG198-1994《速度式流量计检定规程》规定的流量检定点,选择音速文丘利喷嘴的流量及数量。中国电子市场网曹涵推荐
(二氧化碳气体保护焊流量计)

了解更多关于:进口气体流量计授权代理,压缩气体流量计算,气体质量流量计安装图,kofloc气体流量计,气体涡轮流量计拆解,总管气体流量和分支流量计算,气体质量流量计维修,he热式气体流量计无检测流量,热式气体质量流量计能测煤气流量么,原装进口气体流量计,气体超声波流量计哪家好,mf5706-10气体质量流量计进口,超声波气体流量计口径,气体热式流量计数走的慢,气体涡轮流量计 压力,广州气体流量计批发,气体孔板流量计温压补偿公式,气体涡轮流量计中间叶轮,天津瑞立通气体腰轮流量计,酸性气体流量计选用
本文摘自:http://www.oen1718.com 转载请注明出处